34 research outputs found

    Equation of Motion of Small Bodies in Relativity

    Full text link
    There is proven a theorem, to the effect that a material body in general relativity, in a certain limit of sufficiently small size and mass, moves along a geodesic.Comment: 7 page

    Faster Than Light?

    Full text link
    It is argued that special relativity remains a viable physical theory even when there is permitted signals traveling faster than light.Comment: 13 pages; submitted to J. Lorentz Geometr

    Total Mass-Momentum of Arbitrary Initial-Data Sets in General Relativity

    Full text link
    For an asymptotically flat initial-data set in general relativity, the total mass-momentum may be interpreted as a Hermitian quadratic form on the complex, two-dimensional vector space of ``asymptotic spinors''. We obtain a generalization to an arbitrary initial-data set. The mass-momentum is retained as a Hermitian quadratic form, but the space of ``asymptotic spinors'' on which it is a function is modified. Indeed, the dimension of this space may range from zero to infinity, depending on the initial data. There is given a variety of examples and general properties of this generalized mass-momentum.Comment: 25 pages, LaTe

    The Motion of Small Bodies in Space-time

    Get PDF
    We consider the motion of small bodies in general relativity. The key result captures a sense in which such bodies follow timelike geodesics (or, in the case of charged bodies, Lorentz-force curves). This result clarifies the relationship between approaches that model such bodies as distributions supported on a curve, and those that employ smooth fields supported in small neighborhoods of a curve. This result also applies to "bodies" constructed from wave packets of Maxwell or Klein-Gordon fields. There follows a simple and precise formulation of the optical limit for Maxwell fields

    Relativistic Lagrange Formulation

    Get PDF
    It is well-known that the equations for a simple fluid can be cast into what is called their Lagrange formulation. We introduce a notion of a generalized Lagrange formulation, which is applicable to a wide variety of systems of partial differential equations. These include numerous systems of physical interest, in particular, those for various material media in general relativity. There is proved a key theorem, to the effect that, if the original (Euler) system admits an initial-value formulation, then so does its generalized Lagrange formulation.Comment: 34 pages, no figures, accepted in J. Math. Phy

    An axiomatic approach to electromagnetic and gravitational radiation reaction of particles in curved spacetime

    Full text link
    The problem of determining the electromagnetic and gravitational ``self-force'' on a particle in a curved spacetime is investigated using an axiomatic approach. In the electromagnetic case, our key postulate is a ``comparison axiom'', which states that whenever two particles of the same charge ee have the same magnitude of acceleration, the difference in their self-force is given by the ordinary Lorentz force of the difference in their (suitably compared) electromagnetic fields. We thereby derive an expression for the electromagnetic self-force which agrees with that of DeWitt and Brehme as corrected by Hobbs. Despite several important differences, our analysis of the gravitational self-force proceeds in close parallel with the electromagnetic case. In the gravitational case, our final expression for the (reduced order) equations of motion shows that the deviation from geodesic motion arises entirely from a ``tail term'', in agreement with recent results of Mino et al. Throughout the paper, we take the view that ``point particles'' do not make sense as fundamental objects, but that ``point particle equations of motion'' do make sense as means of encoding information about the motion of an extended body in the limit where not only the size but also the charge and mass of the body go to zero at a suitable rate. Plausibility arguments for the validity of our comparison axiom are given by considering the limiting behavior of the self-force on extended bodies.Comment: 37 pages, LaTeX with style package RevTeX 3.

    Formation of Black Holes from Collapsed Cosmic String Loops

    Get PDF
    The fraction of cosmic string loops which collapse to form black holes is estimated using a set of realistic loops generated by loop fragmentation. The smallest radius sphere into which each cosmic string loop may fit is obtained by monitoring the loop through one period of oscillation. For a loop with invariant length LL which contracts to within a sphere of radius RR, the minimum mass-per-unit length μmin\mu_{\rm min} necessary for the cosmic string loop to form a black hole according to the hoop conjecture is μmin=R/(2GL)\mu_{\rm min} = R /(2 G L). Analyzing 25,57625,576 loops, we obtain the empirical estimate fBH=104.9±0.2(Gμ)4.1±0.1f_{\rm BH} = 10^{4.9\pm 0.2} (G\mu)^{4.1 \pm 0.1} for the fraction of cosmic string loops which collapse to form black holes as a function of the mass-per-unit length μ\mu in the range 10−3≲Gμ≲3×10−210^{-3} \lesssim G\mu \lesssim 3 \times 10^{-2}. We use this power law to extrapolate to Gμ∼10−6G\mu \sim 10^{-6}, obtaining the fraction fBHf_{\rm BH} of physically interesting cosmic string loops which collapse to form black holes within one oscillation period of formation. Comparing this fraction with the observational bounds on a population of evaporating black holes, we obtain the limit Gμ≤3.1(±0.7)×10−6G\mu \le 3.1 (\pm 0.7) \times 10^{-6} on the cosmic string mass-per-unit-length. This limit is consistent with all other observational bounds.Comment: uuencoded, compressed postscript; 20 pages including 7 figure
    corecore